Coordinates Bingo (Pride Flag) Teacher Card

Caller App: https://www.geogebra.org/m/gay8zau3

Point	Called
$(-12,18)$	
$(-12,-6)$	
$(24,-6)$	
$(24,18)$	
$(-12,-2)$	
$(-12,2)$	
$(-12,6)$	
$(-12,10)$	
$(-12,14)$	
$(24,-2)$	
$(24,2)$	
$(24,6)$	
$(24,10)$	
$(24,14)$	
$(-12,0)$	

Point	Called
$(-6,6)$	
$(-12,12)$	
$(-12,-3)$	
$(-3,-6)$	
$(-12,15)$	
$(0,6)$	
$(-9,-6)$	
$(3,6)$	
$(-9,18)$	
$(-6,-6)$	
$(6,6)$	
$(-6,18)$	
$(-3,-6)$	
$(9,6)$	
$(-3,18)$	

Progressive Pride Flag Math Lesson

Research the year the flag was designed and the meaning of each colour/symbol:

Year:	Purple circle:
Red	Yellow triangle
Orange	White
Yellow	Pink
Green	Light blue
Dark blue	Brown
Violet	Black

Coordinates: construct the Pride Flag

Plot the points on the axes to create each component of the pride flag, then colour in.

Flag Outline	
Join these four points	
to make a rectangle.	$(-12,18)$ $(-12,-6)$ $(24,-6)$ $(24,18)$
Red trapezoid	$(24,14),(24,18)$, $(-3,18),(1,14)$
Orange trapezoid	$(24,10),(24,14)$, $(1,14),(5,10)$
Yellow trapezoid	$(24,6),(24,10)$, $(5,10),(9,6)$
Green trapezoid	$(24,2),(24,6)$, $(9,6),(5,2)$
Dark blue trapezoid	$(24,-2),(24,2)$, $(5,2),(1,-2)$
Purple trapezoid	$(24,-6),(24,-2)$, $(1,-2),(-3,-6)$

Yellow triangle	$(-12,0)$ $(-6,6)$ $(-12,12)$
White chevron	$(-12,-3)$ $(-3,6)$ $(-12,15)$
Pink chevron	$(0,6)$, $(-12,-3)$ $(-12,15)$
Pale blue chevron	$(-9,-6)$ $(3,6)$ $(-9,18)$
Brown chevron	$(-6,-6)$ $(6,6)$ $(-6,18)$
Black chevron	$(-3,-6)$ $(9,6)$ $(-3,18)$

| Area of a Rectangle: | Area of a Trapezoid |
| :--- | :--- | :--- |
| Area $=12$ squares. | |
| Area of a rectangle $=$ length \times width | Area of a triangle = base \times height $\div 2$ |

Use the formulas or count the squares on your flag to calculate the area of each part of the pride flag:

Whole flag	Red trapezoid	Orange trapezoid	Yellow trapezoid
Yellow triangle			

Progressive Pride Flag: Answer pages

Research the year the flag was designed and the meaning of each colour/symbol:

Year: 1978 By Gilbert Baker with developments in the years 1999, 2013,2017,2018,2021	Purple circle: Intersex person as a whole person
Red: Life	Yellow triangle: Intersex
Orange: Healing	White: Non-binary, people outside of the gender binary
Yellow: Sun and light	Pink: Trans flag: people who identify as female
Green: Nature and serenity	Light blue: trans flag: people who identify as male
Dark blue: Harmony and peace	Brown and Black: LGBTQ2s+ People of colour. Additionally, representing those lost to HIV/Aids, those living with HIV/Aids and the stigma around the virus.
Purple: the human spirit	

The chevron represents a call for progress in the rights and protections of trans, non-binary, intersex and LGBTQ+ people of colour. Hence 'progress' flag.

https://www.verywellmind.com/what-the-colors-of-the-new-pride-flag-mean-5189173
www. tentotwelvemath.com/interactive/

Coordinates: construct the Pride Flag

Flag Outline	$(-12,18)$
	$(-12,-6)$
	$(24,-6)$
	$(24,18)$
Horizontal Stripes	$(-12,-2)$
	$(-12,2)$
	$(-12,6)$
	$(-12,10)$
	$(-12,14)$
	$(24,-2)$
	$(24,2)$
	$(24,6)$
	$(24,10)$
	$(24,14)$

Yellow triangle	$(-12,0)$
	$(-6,6)$
	$(-12,12)$
White hexagon >	$(-12,-3)$
	$(-3,-6)$
	$(-12,15)$
Pink hexagon >	$(0,6),(-12,-3)(-12,15)$
Pale blue hexagon >	$(-9,-6)$
	$(3,6)$
	$(-9,18)$
Brown hexagon >	$(-6,-6)$
	$(6,6)$
	$(-6,18)$
Black hexagon	$(-3,-6)$
	$(9,6)$
	$(-3,18)$

Θ																									
							1																		
							¢																		
							,																		
							$\stackrel{\rightharpoonup}{\perp}$																		
							,																		
							$\stackrel{1}{\mathrm{~N}}$																		
							S												-						
							\bigcirc																		
							∞																		
							o																		
							,																		
¢										ω	or	0	0	\bigcirc					$\stackrel{r}{ }$	\#		$\stackrel{ }{ }$	-	T	
																									$<$
							0																		
							∞																		
							\bigcirc																		
							N																		
							$\stackrel{ }{+}$																		
							क																		
							∞																		
							N																		
							-																		
							N																		
							\sim																		
							$\stackrel{+}{+}$																		
							の																		
							\sim																		
[3							∞																		
								\times																	I

Area calculations (grid squares)

Whole flag The flag on the grid measures 24 by 36 squares. $24 \times 36=864$	Red trapezoid $\begin{aligned} & a=27, b=23, h=4 \\ & \begin{aligned} A & =\frac{a+b}{2} \times h \\ & =\frac{27+23}{2} \times 4 \\ & =\frac{50}{2} \times 4 \\ & =100 \end{aligned} \end{aligned}$	Orange trapezoid $\begin{aligned} & a=23, b=19, h=4 \\ & A=\frac{a+b}{2} \times h \\ & = \\ & =\frac{23+19}{2} \times 4 \\ & \\ & =\frac{42}{2} \times 4 \\ & \\ & =84 \end{aligned}$	Yellow trapezoid $\begin{aligned} & a=19, b=15, h=4 \\ & \begin{aligned} A & = \\ & \frac{a+b}{2} \times h \\ & =\frac{19+15}{2} \times 4 \\ & =\frac{34}{2} \times 4 \\ & =68 \end{aligned} \end{aligned}$
Yellow triangle Base $=12$ Height $=6$ $\begin{aligned} A & =\text { base } \times \text { height } \div 2 \\ & =12 \times 6 \div 2 \\ & =36 \end{aligned}$	White chevron White triangle: $\begin{aligned} & \text { base } \times \text { height } \div 2 \\ & =18 \times 9 \div 2=81 \end{aligned}$ White chevron = =white triangle - yellow triangle $\begin{aligned} & =81-36 \\ & =45 \end{aligned}$	Pink chevron Pink triangle: $\begin{gathered} \text { base } \times \text { height } \div 2 \\ =24 \times 12 \div 2=144 \end{gathered}$ Pink chevron = =pink triangle - white triangle $\begin{gathered} =144-81 \\ =63 \end{gathered}$	Blue, brown, black $1 / 2$ of the blue chevron is a parallelogram. Area of blue parallelogram: $\begin{gathered} \text { base }=3, \text { height }=12 \\ A=3 \times 12=36 \end{gathered}$ Area blue shape $=36 \times 2=72$

Total area should equal $24 \times 36=864$.
red + orange + yellow + green + blue + purple + black + brown + blue + pink + white + y-triangle
$=100+84+68+68+84+100+36+45+63+72+72+72=864 \checkmark$

